Gå til hovedinnhold

SINTEF-blogg Gå til forsiden

  • Energi
  • Hav
  • Digital
  • Helse
  • Industri
  • Klima og miljø
  • Bygg
  • Samfunn
Aktuelt
  • COP29
  • EN
  • NO
Energi

Filmkoking og rask faseovergang av flytende naturgass

I sitt doktorarbeid ved NTNU studerte Eskil Aursand hva som skjer dersom iskald flytende naturgass (LNG) kommer i kontakt med relativt sett kokvarmt vann. Arbeidet danner grunnlag for bedre å forstå sikkerheten ved transport av LNG.

Eskil Aursand under disputasen. Foto: Svend T. Munkejord
Forfattere
Svend Tollak Munkejord
Sjefforsker
Publisert: 6. mai 2019 | Sist redigert: 19. mar 2025
3 min. lesing
Kommentarer (0)

Dansende dråper

Når naturgass skal transporteres over lange avstander, kjøles den ned til under −162°C. Da blir gassen til en væske, og det lønner seg å transportere den i skip.

Om denne flytende naturgassen (LNG-en) ved et uhell skulle havne på sjøen, vil vannet være kokvarmt i forhold. Da skjer noe som likner på det som mange har sett på kjøkkenet: Om man søler vann på en veldig varm kokeplate, vil vanndråpene «danse» omkring. Dette skjer fordi dråpene holdes oppe av sin egen damp, som danner en film mellom dråpen og kokeplaten. Dette kalles filmkoking. Samtidig virker dampen isolerende, slik at det tar en god stund før dråpene fordamper. Den kokeplate-temperaturen som kan få vanndråper til å danse, kalles Leidenfrost-temperaturen.

Rask faseovergang

Med LNG kan det skje mer: Noen ganger blir LNG-væsken varmet opp på en slik måte at væsken blir ustabil og ikke «klarer» å være væske lenger. Da går væsken spontant over til damp. Dette betyr en kraftig utvidelse av volumet, eller sagt på en annen måte, en eksplosjon. Selv uten at gassen antennes, vil dette være farlig f.eks. for konstruksjoner som måtte være i nærheten. Et annet uttrykk for dette fenomenet, er rask faseovergang, eller rapid phase transition (RPT) på engelsk.

Så vidt vi vet, har det aldri skjedd større ulykker på denne måten, men man ønsker å være på den sikre siden, og det har vært forsket siden 1970-tallet på dette. Likevel forstår vi ikke til bunns under hvilke forhold rask faseovergang av LNG vil skje.

Aursand har angrepet problemet ved hjelp av våpen som strømningsmekanikk, kinetisk gassteori og stabilitet av gass-væskefilmer – ting som vi ikke skal gå i detalj om her, men som den interesserte leser kan finne i de seks journalartiklene som han har publisert fra doktorarbeidet.

Enkelt, men vanskelig

Ett av resultatene er et enkelt kriterium for når rask faseovergang av LNG på vann kan skje: Vanntemperaturen må ligge under Leidenfrost-temperaturen til LNG-en og over den høyeste temperaturen hvor LNG-en kan eksistere som væske. Problemet (eller det interessante) er imidlertid at ingen av disse temperaturene er enkle å regne ut, så Aursand konkluderte avhandlingen sin med fem forslag til nye prosjekter for å belyse dette.

Som del av arbeidet hadde Aursand et forskningsopphold i gruppen til professor Stephen H. Davis ved Northwestern University i Chicago.

Doktorarbeidet har vært en del av KPN-prosjektet (kompetanseprosjekt for næringslivet) Predict-RPT, som er et samarbeidsprosjekt mellom SINTEF Energi, Institutt for energi- og prosessteknikk ved NTNU, og Gassteknisk senter, der Equinor er partner. Prosjektet er støttet av Maroff-programmet i Norges forskningsråd.

Hovedveileder for doktorarbeidet var professor Bernhard Müller ved NTNU. Professor emeritus Tor Ytrehus (NTNU), forsker Morten Hammer (SINTEF) og jeg var medveiledere. Eskil Aursand er ansatt som forsker ved Avdelings gassteknologi ved SINTEF Energi.

Medveileder Morten Hammer (SINTEF), medveileder Tor Ytrehus (NTNU), hovedveileder Bernhard Müller (NTNU), medveileder Svend Tollak Munkejord (SINTEF), kandidat Eskil Aursand (NTNU / SINTEF), administrator Simen Å. Ellingsen (NTNU), andreopponent David Webber (UK Health and Safety Executive), førsteopponent Alexander Oron (Technion). Foto: Magnus Aa. Gjennestad.
Førsteopponent, professor Alexander Oron, Technion – Israel Institute of Technology. Foto: Svend T. Munkejord.
Andreopponent, Dr David Webber, UK Health and Safety Executive. Foto: Svend T. Munkejord.

Kommentarer

Ingen kommentarer enda. Vær den første til å kommentere!

Legg igjen en kommentar Avbryt svar

Din e-postadresse vil ikke bli publisert. Obligatoriske felt er merket med *

Mer om Energi

Hvordan kan energikartlegging bli en gullgruve for din bedrift?

Author Image
Author Image
Author Image
3 forfattere

Er straumnettet fullt og speler Gud med terningar?

Author Image
Author Image
Author Image
3 forfattere
Et koblingsanlegg består av en rekke enkeltkomponenter installert nørt hverandre og forbundet sammen med kobber eller aluminiumsledere. Forskjellige typer komponenter (effektbrytere, sikringer, lastbryter og skillebrytere) anvendes til å endre nettet og /eller koble bort feil. Koblingsanlegg for de høyeste spenningene (145-420kV) forbinder typisk 3-10 kraftlinjer og transformatorer. I Norge finnes det i dag noen hunder koblingsanlegg på disse spenningene. Slike anlegg kan være luftisolerte eller SF6-isolerte (SF6-anlegg). Brukergruppen har registrert 159 slike anlegg blant sine medlemmer. På bildene er det eksempler på to slike SF6-anlegg, hvor alle komponenter er innelukket i gassrom. Dette gjør at SF6-anlegg tar vesentlig mindre plass enn luftisolerte anlegg og egner seg på steder med begrenset plass, typisk i byer og tettsteder.

Gassregnskap 2024

Maren Istad
Maren Istad
Forsker

Teknologi for et bedre samfunn

  • Om denne bloggen
  • Slik skriver du en forskningsblogg
  • Tema og samlinger
  • Meld deg på nyhetsbrev
  • Podcast: Smart forklart
  • Forskningsnytt: Gemini.no
  • Facebook
  • LinkedIn
  • Instagram
Gå til SINTEF.no
SINTEF logo
© 2025 Stiftelsen SINTEF
Redaktører Personvern i SINTEF Pressekontakter Nettside av Headspin